Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.208
Filtrar
1.
Sci Rep ; 14(1): 8637, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622241

RESUMO

Rapid mixing and precise timing are key for accurate biomedical assay measurement, particularly when the result is determined as the rate of a reaction: for example rapid immunoassay in which the amount of captured target is kinetically determined; determination of the concentration of an enzyme or enzyme substrate; or as the final stage in any procedure that involves a capture reagent when an enzyme reaction is used as the indicator. Rapid mixing and precise timing are however difficult to achieve in point-of-care devices designed for small sample volumes and fast time to result. By using centrifugal microfluidics and transposing the reaction surface from a chamber to a single mm-scale bead we demonstrate an elegant and easily manufacturable solution. Reagents (which may be, for example, an enzyme, enzyme substrate, antibody or antigen) are immobilised on the surface of a single small bead (typically 1-2 mm in diameter) contained in a cylindrical reaction chamber subjected to periodically changing rotational accelerations which promote both mixing and uniform mass-transfer to the bead surface. The gradient of Euler force across the chamber resulting from rotational acceleration of the disc, dΩdisc/dt, drives circulation of fluid in the chamber. Oscillation of Euler force by oscillation of rotational acceleration with period, T, less than that of the hydrodynamic relaxation time of the fluid, folds the fluid streamlines. Movement of the bead in response to the fluid and the changing rotational acceleration provides a dynamically changing chamber shape, further folding and expanding the fluid. Bead rotation and translation driven by fluid flow and disc motion give uniformity of reaction over the surface. Critical parameters for mixing and reaction uniformity are the ratio of chamber radius to bead radius, rchamber/rbead, and the product Trchamber(dΩdisc/dt), of oscillation period and Euler force gradient across the fluid. We illustrate application of the concept using the reaction of horse radish peroxidase (HRP) immobilised on the bead surface with its substrate tetramethylbenzidine (TMB) in solution. Acceleration from rest to break a hydrophobic valve provided precise timing for TMB contact with the bead. Solution uniformity from reaction on the surface of the bead in volumes 20-50 uL was obtained in times of 2.5 s or less. Accurate measurement of the amount of surface-bound HRP by model fitting to the measured kinetics of colour development at 10 s intervals is demonstrated.


Assuntos
Anticorpos , Microfluídica , Microfluídica/métodos , Antígenos , Sistemas Automatizados de Assistência Junto ao Leito , Interações Hidrofóbicas e Hidrofílicas
2.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626615

RESUMO

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Assuntos
Técnicas Biossensoriais , Técnicas de Genotipagem , Infecções por Helicobacter , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Genótipo , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Microfluídica/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/análise , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Recombinases/metabolismo
3.
Microb Cell Fact ; 23(1): 104, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594681

RESUMO

BACKGROUND: Single-cell droplet microfluidics is an important platform for high-throughput analyses and screening because it provides an independent and compartmentalized microenvironment for reaction or cultivation by coencapsulating individual cells with various molecules in monodisperse microdroplets. In combination with microbial biosensors, this technology becomes a potent tool for the screening of mutant strains. In this study, we demonstrated that a genetically engineered yeast strain that can fluorescently sense agonist ligands via the heterologous expression of a human G-protein-coupled receptor (GPCR) and concurrently secrete candidate peptides is highly compatible with single-cell droplet microfluidic technology for the high-throughput screening of new agonistically active peptides. RESULTS: The water-in-oil microdroplets were generated using a flow-focusing microfluidic chip to encapsulate engineered yeast cells coexpressing a human GPCR [i.e., angiotensin II receptor type 1 (AGTR1)] and a secretory agonistic peptide [i.e., angiotensin II (Ang II)]. The single yeast cells cultured in the droplets were then observed under a microscope and analyzed using image processing incorporating machine learning techniques. The AGTR1-mediated signal transduction elicited by the self-secreted Ang II peptide was successfully detected via the expression of a fluorescent reporter in single-cell yeast droplet cultures. The system could also distinguish Ang II analog peptides with different agonistic activities. Notably, we further demonstrated that the microenvironment of the single-cell droplet culture enabled the detection of rarely existing positive (Ang II-secreting) yeast cells in the model mixed cell library, whereas the conventional batch-culture environment using a shake flask failed to do so. Thus, our approach provided compartmentalized microculture environments, which can prevent the diffusion, dilution, and cross-contamination of peptides secreted from individual single yeast cells for the easy identification of GPCR agonists. CONCLUSIONS: We established a droplet-based microfluidic platform that integrated an engineered yeast biosensor strain that concurrently expressed GPCR and self-secreted the agonistic peptides. This offers individually isolated microenvironments that allow the culture of single yeast cells secreting these peptides and gaging their signaling activities, for the high-throughput screening of agonistic peptides. Our platform base on yeast GPCR biosensors and droplet microfluidics will be widely applicable to metabolic engineering, environmental engineering, and drug discovery.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Humanos , Microfluídica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala
4.
Biomed Phys Eng Express ; 10(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38452735

RESUMO

The demand for microfluidic pressure sensors is ever-increasing in various industries due to their crucial role in controlling fluid pressure within microchannels. While syringe pump setups have been traditionally used to regulate fluid pressure in microfluidic devices, they often result in larger setups that increase the cost of the device. To address this challenge and miniaturize the syringe pump setup, the researcher introduced integrated T-microcantilever-based microfluidic devices. In these devices, microcantilevers are incorporated, and their deflections correlate with the microchannel's pressure. When the relative pressure of fluid (plasma) changes, the T-microcantilever deflects, and the extent of this deflection provides information on fluid pressure within the microchannel. In this work, finite element method (FEM) based simulation was carried out to investigate the role of material, and geometric parameters of the cantilever, and the fluid viscosity on the pressure sensing capability of the T-microcantilever integrated microfluidic channel. The T-microcantilever achieves a maximum deflection of 127µm at a 5000µm/s velocity for Young's modulus(E) of 360 kPa of PDMS by employing a hinged structure. On the other hand, a minimum deflection of 4.05 × 10-5µm was attained at 5000µm/s for Young's modulus of 1 TPa for silicon. The maximum deflected angle of the T-cantilever is 20.46° for a 360 kPa Young's modulus while the minimum deflection angle of the T-cantilever is measured at 13.77° for 900 KPa at a fluid velocity of 5000µm s-1. The T-cantilever functions as a built-in microchannel that gauges the fluid pressure within the microchannel. The peak pressure, set at 8.86 Pa on the surface of the cantilever leads to a maximum deflection of 0.096µm (approximately 1µm) in the T-cantilever at a 1:1 velocity ratio. An optimized microfluidic device embedded with microchannels can optimize fluid pressure in a microchannel support cell separation.


Assuntos
Microfluídica , Silício , Microfluídica/métodos , Silício/química , Módulo de Elasticidade
5.
Lab Chip ; 24(7): 1867-1874, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38487919

RESUMO

Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Pesquisa Translacional Biomédica
6.
PLoS Biol ; 22(3): e3002503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478490

RESUMO

Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the µm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.


Assuntos
Técnicas de Cultura de Células , Microtecnologia , Microfluídica/métodos , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
7.
Anal Chim Acta ; 1301: 342472, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553127

RESUMO

BACKGROUND: Cellular biomechanics plays a significant role in the regulation of cellular physiological and pathological processes. In recent years, multiple methods have been developed to evaluate cellular biomechanics, such as atomic force microscopy (AFM), micropipette aspiration, and magnetic tweezers. However, most of these methods only focus on a single parameter and cannot automate the process at a high-efficiency level. A novel microfluidic method is necessary to achieve the simultaneous multi-parametric measurement of cellular biomechanics and high-precision cellular mechanical phenotyping at high throughput. RESULTS: To tackle the issue concerning the low-throughput and cellular single-parameter evaluation, we designed and fabricated a microfluidic chip featuring multiple micro-constrained channels structure, providing a simultaneous multi-parametric assessment of cellular biomechanics, including elastic modulus, recovery capability, and deformability. We compared the biomechanical properties of normal human gastric mucosal epithelial cells (GES-1) and human gastric cancer cells (AGS and MKN-45) by the chip. Results demonstrated that the elastic modulus of GES-1, AGS, and MKN-45 cells decreased sequentially, which was the opposite of their invasiveness and metastasis potential, suggesting the inverse correlation between cellular elastic modulus and malignancy. Meanwhile, the recovery capability and deformability of GES-1, AGS, and MKN-45 cells increased sequentially, demonstrating the positive correlation between cellular deformability and malignancy. Furthermore, multiple parameters were used to distinguish gastric cancer cells from normal gastric cells via machine learning. An accuracy of over 94.8% for identifying gastric cancer cells was achieved. SIGNIFICANCE: This study provides a deep insight into the biophysical mechanism of gastric cancer metastasis at the single-cell level and possesses great potential to function as a valuable tool for single-cell analysis, thereby facilitating high-precision and high-throughput discrimination of cellular phenotypes that are not easily discernible through single-marker analysis.


Assuntos
Neoplasias Gástricas , Humanos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Microfluídica/métodos , Dispositivos Lab-On-A-Chip
8.
Talanta ; 273: 125896, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479027

RESUMO

Bioanalysis faces challenges in achieving fast, reliable, and point-of-care (POC) determination methods for timely diagnosis and prognosis of diseases. POC devices often display lower sensitivity compared to laboratory-based methods, limiting their ability to quantify low concentrations of target analytes. To enhance sensitivity, the synthesis of new materials and improvement of the efficiency of the analytical strategies are necessary. Enzyme-mimicking materials have revolutionized the field of the fabrication of new high-throughput sensing devices. The integration of microfluidic chips with analytical techniques offers several benefits, such as easy miniaturization, need for low biological sample volume, etc., while also enhancing the sensitivity of the probe. The use enzyme-like nanomaterials in microfluidic systems can offer portable strategies for real-time and reliable detection of biological agents. Colorimetry and electrochemical methods are commonly utilized in the fabrication of nanozyme-based microfluidic systems. The review summarizes recent developments in enzyme-mimicking materials-integrated microfluidic analytical methods in biomedical analysis and discusses the current challenges, advantages, and potential future directions.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Nanoestruturas , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Miniaturização , Técnicas Biossensoriais/métodos , Dispositivos Lab-On-A-Chip
9.
Angew Chem Int Ed Engl ; 63(18): e202401544, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38470412

RESUMO

There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.


Assuntos
DNA Mitocondrial , Hidrogéis , Microfluídica/métodos , Sefarose , Microscopia
10.
Analyst ; 149(7): 2147-2160, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38441128

RESUMO

Droplet microfluidics is a highly sensitive and high-throughput technology extensively utilized in biomedical applications, such as single-cell sequencing and cell screening. However, its performance is highly influenced by the droplet size and single-cell encapsulation rate (following random distribution), thereby creating an urgent need for quality control. Machine learning has the potential to revolutionize droplet microfluidics, but it requires tedious pixel-level annotation for network training. This paper investigates the application software of the weakly supervised cell-counting network (WSCApp) for video recognition of microdroplets. We demonstrated its real-time performance in video processing of microfluidic droplets and further identified the locations of droplets and encapsulated cells. We verified our methods on droplets encapsulating six types of cells/beads, which were collected from various microfluidic structures. Quantitative experimental results showed that our approach can not only accurately distinguish droplet encapsulations (micro-F1 score > 0.94), but also locate each cell without any supervised location information. Furthermore, fine-tuning transfer learning on the pre-trained model also significantly reduced (>80%) annotation. This software provides a user-friendly and assistive annotation platform for the quantitative assessment of cell-encapsulating microfluidic droplets.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Análise de Célula Única/métodos , Software , Técnicas Analíticas Microfluídicas/métodos
11.
Lab Chip ; 24(7): 1947-1956, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38436364

RESUMO

Traditional methods for the enrichment of microorganisms rely on growth in a selective liquid medium or on an agar plate, followed by tedious characterization. Droplet microfluidic techniques have been recently used to cultivate microorganisms and preserve enriched bacterial taxonomic diversity. However, new methods are needed to select droplets comprising not only growing microorganisms but also those exhibiting specific properties, such as the production of value-added compounds. We describe here a droplet microfluidic screening technique for the functional selection of biosurfactant-producing microorganisms, which are of great interest in the bioremediation and biotechnology industries. Single bacterial cells are first encapsulated into picoliter droplets for clonal cultivation and then passively sorted at high throughput based on changes in interfacial tension in individual droplets. Our method expands droplet-based microbial enrichment with a novel approach that reduces the time and resources needed for the selection of surfactant-producing bacteria.


Assuntos
Biotecnologia , Microfluídica , Microfluídica/métodos , Bactérias , Tensoativos
12.
Methods Mol Biol ; 2789: 45-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506990

RESUMO

This protocol describes the use of the Spectradyne nCS1 instrument to measure the particles per mL concentration and size of nanoparticles. The Spectradyne nCS1 is a particle-analyzing instrument that uses microfluidic resistive pulse sensing, rather than optical measurements, to determine the size and concentration of samples. The size and concentration of a sample are determined by measuring the changes in voltage as particles travel through a nano-constriction in the microfluidic cartridge. This method also has the advantage over optical techniques in that measurements are not dependent on the type of material being measured (e.g., refractive index of the sample itself is not needed for accurate analysis), and only microliters (typically 5 µL) of a sample are needed for analysis.


Assuntos
Microfluídica , Nanopartículas , Tamanho da Partícula , Microfluídica/métodos
13.
Tissue Cell ; 87: 102339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432127

RESUMO

Microfluidics is an interdisciplinary field that combines knowledge from various disciplines, including biology, chemistry, sports medicine, fluid dynamics, kinetic biomechanics, and microelectronics, to manipulate and control fluids and particles in micron-scale channels and chambers. These channels and chambers can be fabricated using different materials and methods to achieve various geometries and shapes. Microfluidics has numerous biomedical applications, such as drug encapsulation, nanoparticle preparation, cell targeting, analysis, diagnosis, and treatment of sports injuries in both professional and non-professional athletes. It can also be used in other fields, such as biological analysis, chemical synthesis, optics, and acceleration in the treatment of critical sports injuries. The objective of this review is to provide a comprehensive overview of microfluidic technology, including its fabrication methods, current platform materials, and its applications in sports medicine. Biocompatible, biodegradable, and semi-crystalline polymers with unique mechanical and thermal properties are one of the promising materials in microfluidic technology. Despite the numerous advantages of microfluidic technology, further research and development are necessary. Although the technology offers benefits such as ease of operation and cost efficiency, it is still in its early stages. In conclusion, this review emphasizes the potential of microfluidic technology and highlights the need for continued research to fully exploit its potential in the biomedical field and sport applications.


Assuntos
Traumatismos em Atletas , Nanopartículas , Humanos , Microfluídica/métodos , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
14.
Biomed Microdevices ; 26(2): 20, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430318

RESUMO

Polymerase chain reaction (PCR) has been considered as the gold standard for detecting nucleic acids. The simple PCR system is of great significance for medical applications in remote areas, especially for the developing countries. Herein, we proposed a low-cost self-assembled platform for microchamber PCR. The working principle is rotating the chamber PCR microfluidic chip between two heaters with fixed temperature to solve the problem of low temperature variation rate. The system consists of two temperature controllers, a screw slide rail, a chamber array microfluidic chip and a self-built software. Such a system can be constructed at a cost of about US$60. The micro chamber PCR can be finished by rotating the microfluidic chip between two heaters with fixed temperature. Results demonstrated that the sensitivity of the temperature controller is 0.1℃. The relative error of the duration for the microfluidic chip was 0.02 s. Finally, we successfully finished amplification of the target gene of Porphyromonas gingivalis in the chamber PCR microfluidic chip within 35 min and on-site detection of its PCR products by fluorescence. The chip consisted of 3200 cylindrical chambers. The volume of reagent in each volume is as low as 0.628 nL. This work provides an effective method to reduce the amplification time required for micro chamber PCR.


Assuntos
Microfluídica , Microfluídica/métodos , Temperatura , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos
15.
Colloids Surf B Biointerfaces ; 236: 113829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430829

RESUMO

Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PµSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.


Assuntos
Lipossomos , Microfluídica , Lipossomos/química , Microfluídica/métodos , Diálise Renal , Ultrafiltração , Dispositivos Lab-On-A-Chip
16.
ACS Sens ; 9(3): 1033-1048, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38363106

RESUMO

Sensing systems necessitate automation to reduce human effort, increase reproducibility, and enable remote sensing. In this perspective, we highlight different types of sensing systems with elements of automation, which are based on flow injection and sequential injection analysis, microfluidics, robotics, and other prototypes addressing specific real-world problems. Finally, we discuss the role of computer technology in sensing systems. Automated flow injection and sequential injection techniques offer precise and efficient sample handling and dependable outcomes. They enable continuous analysis of numerous samples, boosting throughput, and saving time and resources. They enhance safety by minimizing contact with hazardous chemicals. Microfluidic systems are enhanced by automation to enable precise control of parameters and increase of analysis speed. Robotic sampling and sample preparation platforms excel in precise execution of intricate, repetitive tasks such as sample handling, dilution, and transfer. These platforms enhance efficiency by multitasking, use minimal sample volumes, and they seamlessly integrate with analytical instruments. Other sensor prototypes utilize mechanical devices and computer technology to address real-world issues, offering efficient, accurate, and economical real-time solutions for analyte identification and quantification in remote areas. Computer technology is crucial in modern sensing systems, enabling data acquisition, signal processing, real-time analysis, and data storage. Machine learning and artificial intelligence enhance predictions from the sensor data, supporting the Internet of Things with efficient data management.


Assuntos
Inteligência Artificial , Robótica , Humanos , Reprodutibilidade dos Testes , Automação , Microfluídica/métodos
17.
Lab Chip ; 24(5): 1394-1418, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38344937

RESUMO

Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.


Assuntos
Ecologia , Microfluídica , Animais , Microfluídica/métodos
18.
Lab Chip ; 24(5): 1064-1075, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356285

RESUMO

Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Ensaios de Triagem em Larga Escala/métodos , Engenharia Biomédica
19.
Lab Chip ; 24(5): 1076-1087, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38372151

RESUMO

Limitations with cell cultures and experimental animal-based studies have had the scientific and industrial communities searching for new approaches that can provide reliable human models for applications such as drug development, toxicological assessment, and in vitro pre-clinical evaluation. This has resulted in the development of microfluidic-based cultures that may better represent organs and organ systems in vivo than conventional monolayer cell cultures. Although there is considerable interest from industry and regulatory bodies in this technology, several challenges need to be addressed for it to reach its full potential. Among those is a lack of guidelines and standards. Therefore, a multidisciplinary team of stakeholders was formed, with members from the US Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST), European Union, academia, and industry, to provide a framework for future development of guidelines/standards governing engineering concepts of organ-on-a-chip models. The result of this work is presented here for interested parties, stakeholders, and other standards development organizations (SDOs) to foster further discussion and enhance the impact and benefits of these efforts.


Assuntos
Microfluídica , Sistemas Microfisiológicos , Animais , Humanos , Microfluídica/métodos , Técnicas de Cultura de Células , Desenvolvimento de Medicamentos , Padrões de Referência , Dispositivos Lab-On-A-Chip
20.
Platelets ; 35(1): 2316743, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390892

RESUMO

Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.


What is the context? To study the mechanism of arterial thrombosis, including the platelet adhesion and aggregation behavior and the coagulation process.Microfluidic technology is commonly used to study thrombosis. Microfluidic technology can simulate the real physiological environment on the microscopic scale in vitro, with high throughput, low cost, and fast speed.As an innovative experimental platform, microfluidic technology has made remarkable progress and has found applications in the fields of biology and medicine.What is new? This review summarizes the different fabrication methods of microfluidics and compares the advantages and disadvantages of these methods. Recent developments in microfluidic integrated systems and modular microfluidic systems have led to more diversified and automated microfluidic chips in the future.The different types and functions of microfluidic models are summarized. Platelet adhesion aggregation and coagulation processes, as well as arterial thrombus-related shear force changes and mechanical behaviors, were investigated by constructing artificial blood vessels and reproducing hemodynamics.Microfluidics can provide a basis for the development of personalized thrombosis treatment strategies. By analyzing the mechanism of action of existing drugs, using microfluidic technology for high-throughput screening of drugs and evaluating drug efficacy, more drug therapy possibilities can be developed.What is the impact?This review utilizes microfluidics to further advance the study of arterial thrombosis, and microfluidics is also expected to play a greater role in the biomedical field in the future.


Assuntos
Substitutos Sanguíneos , Trombose , Humanos , Microfluídica/métodos , Plaquetas/patologia , Trombose/patologia , Adesividade Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...